关灯
护眼
字体:

生物电

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

布性动物体中能传布的电反应更普遍。如当神经细胞受到较强的电刺激时,在阴极产生的局部电反应随刺激增强而增大,超过阈值,就会引起一个能沿神经纤维传导的神经冲动。神经冲动到达的区域伴有膜电位的变化,称动作膜电位(简称动作电位)。这是一个膜电位的反极化过程,即由原来的膜外较膜内正变为膜外较膜内负。因此,发生兴奋的部位与静息部位之间,出现电位差,兴奋部位较正常部位为负,电位可达100毫伏以上。这个负电位区域可以极快的速度向前传导,如对虾大神经纤维的传导速度可达80~200米/秒。兴奋性突触后电位或感受器电位,虽然不是能传导的兴奋波,但当它们增大到一定程度,就会影响邻近神经组织的兴奋性,甚至发生伴有负电位变化的神经冲动。动物的组织或器官,在发生应激性反应的情况下,也会出现电变化。它的大小与极性决定于组成该组织的细胞兴奋时所产生的电场的矢量总和。如眼睛受光照刺激时,可记录到眼球的前端与后面之间的电位差变化,称为视网膜电图。它的波形很复杂,系由光刺激使感受细胞产生感受器电位,并相继引起视网膜中其他细胞产生兴奋与电位变化。由于这些电变化的电场方向不一致,因此,视网膜电图标志的是这些细胞的产生的电场的矢量总和。不同的动物,由于视网膜的结构不同,产生的视网膜电图也不同,同时光照程度、时间等因素也会影响视网膜电图的波形。生物有机体是一个导电性的容积导体。当一些细胞或组织上发生电变化时,将在这容积导体内产生电场。因此在电场的不同部位中可引导出电场的电位变化,而且其大小与波形各不相同。例如,心电图就是心脏细胞活动时产生的复杂电位变化的矢量总和。随引导电极部位不同,记录的波形不一样,所反映的生理意义也不同。另外,高等动物中枢神经系统中所产生的电场,在人或动物的头皮上,无论静息状态或活动状态时,都有“自发”的节律性电位波动,称为脑电波。它是脑内大量的神经细胞活动时所产生的电场的总和表现。在静息状态时,电位变化幅度较高,而波动的频率较低。当兴奋活动时,由于脑内各神经元的活动步调不一致(趋于异步化),总合电位就较低,而波动的频率较高。当接受外界的某种特定刺激时,总和电场比较强大,因此,可以记录到一个显著的电位变化。因为这种电位变化是由外界刺激诱发而产生的,所以称为诱发电位。学说企图用一种学说去解释各种生物体中所出现的各种不同的电现象是不可能的。不过,在动物体上,特别是在神经系统或肌肉系统中所发生的各种电现象,基本上可以用A.L.霍奇金与A.F.赫胥黎提出的离子学说,从细胞水平加以解释。离子学说是在J.伯恩斯坦(1902)提出的膜学说的基础上发展而成的。离子学说认为,神经或肌肉的细胞膜,对不同的离子具有不同程度的通透性。又由于细胞内的各种离子浓度,特别是钾离子、钠离子和氯离子,与细胞外液中的浓度不同,因此,在细胞膜内外两侧间就会产生电位差(根据F.G.唐南氏平衡原理)即膜电位。这是静息电位的基础。在不同的生理条件下,细胞膜对各种离子的通透性将发生变化,因此膜电位也即发生改变,即形成各种形式的动作电位。例如,在静息状态下,神经或肌肉细胞的细胞膜对钾离子具有较大的通透性,而细胞内的钾离子浓度高于细胞外的浓度几十倍,因而形成几十毫伏的膜外较膜内正的静息膜电位。当改变细胞外(或细胞内)的钾离子浓度时,静息膜电位将按能斯脱(Nernst)公式的关系,发生相应的改变。这就证明了静息膜电位决定于细胞内外钾离子浓度的观点。有些植物细胞的静息膜电位,也是由细胞内外钾离子的浓度所决定的。当神经或肌肉细胞发生兴奋时,细胞膜对各种离子的通透性发生了变化,即对钠离子的通透性突然增大,并在各种离子的通渗性中占优势地位。因此在这瞬间内,膜电位的大小与极性,主要决定于细胞膜内外的钠离子浓度。由于细胞外的钠离子浓度较细胞内高,因此,在短时间内膜电位突然由膜外较膜内正变为膜内较膜外正,即出现反极化现象。此时电位变化的幅度(去极化后再成反极化)可达100毫伏以上,这就是动作电位。但这时仍有不同于静息状态下的膜电位,称为动作膜电位。动作电位所在的区域,即兴奋冲动所在的区域,会迅速地向前传导。兴奋冲动在某一区域出现的时间极短,只有几毫秒。当兴奋冲动过去以后,这一区域的膜电位又逐渐恢复到原来的静息状态,即恢复静息膜电位。在不同的细胞上,甚至在同一个细胞的不同区域的细胞膜上所发生的通透性变化并不完全一致。例如,脊椎动物视网膜中的视细胞,在受光照刺激时所产生的反应是膜电位升高(超极化)。但是,无脊椎动物视网膜中的视细胞,受光照刺激时所产生的反应是膜电位降低(去极化)。又如,在同一个脊髓运动神经元轴突的膜上,兴奋时所表现的是去极化甚至反极化反应。但在同一个运动神经元的兴奋性突触后膜上,当接受另一个神经元的神经末梢释放的兴奋性递质时,虽然也产生去极化反应,但这时所发生的离子通透性变化却与轴突上所发生的不同。兴奋性突触下膜兴奋时,对钠离子的通透性不是单独的突然增加,而是对各种离子的通透性普遍地增加,所以它并不出现反极化(膜内较膜外正)的状态。在同一个运动神经元的抑制性突触后膜上,当接受另一个神经元的神经末梢释放的抑制性递质作用时,情况另是一样。抑制性突触下膜兴奋时对钾离子与氯离子的通透性增高,使膜电位超极化,则膜外更正于膜内。可见不同的细胞,甚至同一细胞的不同区域的细胞膜,在兴奋时所产生的膜电位变化是不相同的。总的来说,无论是静息膜电位或各种动作膜电位变化,都可以用细胞膜对各种离子通透性的不同来解释。由于通透性的不同变化,膜内外各种离子浓度的差别,表现出各种极性、幅值、频率、相位不同的生物电现象。在组织或器官上发生的生物电现象,大多数是个别细胞所产生的生物电的矢量总和,所以对它的发生机制同样可以用离子学说去解释。但有些生物电变化的时间过程极缓慢,如光合作用时所产生的电变化与细胞的代谢活动有密切联系,即是一种生物电化学电位。在大脑皮层上还可以检测出一些极缓慢的电位波动,有的在1分钟内波动几次,有的几分钟甚至几十分钟才有明显的变化。这种电位与快速的神经细胞兴奋活动不同,也可能是一种由代谢活动所引起的或与神经胶质细胞活动有关的生物电化学现象。
上一页目录下一章

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”