¹ØµÆ
»¤ÑÛ
×ÖÌ壺
´ó
ÖÐ
С

µÚËÄ°ÙÁãÁùÕ ¸ãÁ˸ö´óÊÂÇ飡

Ê×Ò³Êé¼Ü¼ÓÈëÊéÇ©·µ»ØĿ¼

Çë°²×°ÎÒÃǵĿͻ§¶Ë

¸üг¬¿ìµÄÃâ·ÑС˵APP

ÏÂÔØAPP
ÖÕÉíÃâ·ÑÔĶÁ

Ìí¼Óµ½Ö÷ÆÁÄ»

Çëµã»÷£¬È»ºóµã»÷¡°Ìí¼Óµ½Ö÷ÆÁÄ»¡±

    406ÕÂ

    ¡°²»ÇÉ£¬ÎÒ»¹ÕæÖ¤Ã÷³öÀ´ÁË¡£¡±

    ³ÌŵµÄÉùÒô»Øµ´ÔÚ¿Õ¿õµÄСÀñÌÃÄÚ£¬ÈÃÔÚ×ùµÄËùÓÐÈ˶¼ÏÝÈë¶ÌÔݵÄʧÉñ¡£

    ËûÃÇ£¬ºÃÏñÌýµ½ÁËʲô²»µÃÁ˵ÄÊÂÇé¡£

    Ì¨ÉÏÀ­Èû¶û½ÌÊڵĺôÎüÃ͵ØÒ»ÖÍ£¬Íû×ųÌŵÄÇͦ°ÎµÄÉíÓ°£¬×ã×ã³ÁĬÁËÓÐÊ®¼¸Ãë¡£

    Ëæºó£¬ËûºÇºÇЦµÀ£¬¡°ÕâλÏÈÉú£¬ÄãÊÇÔÚ¿ªÍæЦ£¬¶Ô°É£¿¡±

    Èç¹û³Ìŵ˵Ëû֮ǰ˵µÄÄÇ·¬½áÂÛûÓÐȷʵµÄÖ¤¾Ý£¬Ö»ÊÇÍ£ÁôÔÚ¡°²ÂÏ롱½×¶Î£¬ÄǾͶ¥¶àÖ¤Ã÷³ÌŵµÄÄÔ¶´×ã¹»´ó¶øÒÑ¡£

    ÒªÖªµÀ£¬²¢·ÇËùÓеIJÂÏ붼ÄÜÏñ¸çµÂ°ÍºÕ²ÂÏëºÍÀèÂü²ÂÏëÄÇÑùÔÚÊýѧ½çÓµÓгç¸ßµÄµØ룬¸üºÎ¿ö²ÂÏëµÄÌá³öÕß»¹½ö½öÖ»ÊÇһλÑо¿Éú¡£

    µ«Èç¹û³ÌŵȷʵÈçËûÑÔÖ®ÔäÔäµÄÒ»°ã£¬Óз½·¨È¥Ö¤Ã÷Ëû¿ÚÖÐËù˵µÄÄǸö¡°²ÂÏ롱£¬ÄǾÍÐÔÖʾͱäÁË£¬ÄǾͱä³ÉÁË¡°¶¨Àí¡±¡£

    ¡°²ÂÏ롱ºÍ¡°¶¨Àí¡±¿ÉÊÇÁ½¸öÍêÈ«²»Í¬µÄ¸ÅÄî¡£

    ¡°²ÂÏ롱µÄʵÓÃÐԵ͵ĿÉÁ¯£¬µ«¡°¶¨Àí¡±²»Ò»Ñù£¬¼´±ãÄǸö¶¨ÀíÔÙÔõô¼òµ¥£¬Ó¦ÓÃÐÔÄܶ¼Òª±È¡°²ÂÏ롱ǿ²»ÉÙ¡£

    ¶øÇÒ£¬³ÌŵËùÌá³öµÄÕâ¸ö¡°¶¨Àí¡±£¬¿É²»ÊÇʲôÀôó½ÖµÄ»õÉ«¡£

    ÆÕ±éÒâÒåÉϵķÇÆæÒì´úÊý´ØµÄZataº¯ÊýµÄ¹²Í¬ÐÔÖÊ¡£

    Õâ²»½ö½ö½ÒʾÁËÓÐÏÞÓòÉ϶¨ÒåµÄ´úÊý´ØµÄËãÊýºÍ¸´´úÊý´ØµÄÍØÆËÖ®¼äµÄÒ»¸öÉî¿ÌÁªÏµ£¬»¹ËµÃ÷ÁËÍØÆË¿Õ¼äÉϵÄͬµ÷·½·¨£¬Í¬ÑùÊÊÓÃÓڴغ͸ÅÐΡ£

    ×÷Ϊ¼¸ºÎѧ·½ÃæµÄÊýѧ¼Ò£¬À­Èû¶ûÉîÖªÕâ¸ö¶¨ÀíµÄ³öÏÖÒâζ×Åʲô¡£

    ¼¸ºÎѧÄܹ»Í¨¹ýÍØÆËѧµÄͬµ÷·½·¨£¬¶Ô±íʾÀíÂÛºÍ×Ôͬ¹¹ÀíÂÛÕ¹¿ª¸üÉî²ã´ÎµÄÑо¿¡£

    ÓÚ´Ëͬʱ£¬Ò»Ö±À§ÈÅFrobenius×Ô̬ͬÁìÓòµÄ»·Ó³ÉäÎÊÌ⽫»áµÃµ½½â¾ö¡£½«´úÊýÍØÆ˺ʹúÊý¼¸ºÎµÄmotive¹¤¾ß»áÔÙ´ÎÔö¼Ó¡£

    ÁíÍ⣬ÓÉÓڸö¨ÀíÑо¿µÄºËÐÄÒÀ¾ÉÊÇZataº¯Êý£¬ÄÇô¶ÔÓÚÀèÂü²ÂÏëµÄÖ¤Ã÷£¬Ò²»áÌṩÁíÒ»ÖÖÐÂÆæµÄ˼·¡£

    ×ÜÖ®£¬Ö»Òª³ÌŵֻҪÄÜÖ¤Ã÷Õâ¸ö½áÂÛÊÇÒ»¸ö¡°¶¨Àí¡±£¬ÄǾø¶Ô»áÔÚ¼¸ºÎѧÁìÓòÔì³ÉÒ»¹É·ç±©¡£

    ¡°¿ªÍæЦ£¿¡±³ÌŵËÊËʼ磬¿ª¿Ú˵µÀ£¬¡°À­Èû¶ûÏÈÉú£¬ÎÒ¿ÉûÓпªÍæЦµÄÐÄ˼¡£¡±

    À­Èû¶ûüͷ½ô½ôÖåÆ𣬡°ÄÇÄã¡­¡­¡±

    ¡°ÕæÊÇÂé·³¡£¡±³Ìŵֱ½ÓÍùÀñÌÃÇ°·½µÄÎę̀ÉÏ×ßÈ¥£¬Ò»±ß×ßÒ»±ß˵µÀ£¬¡°ËãÁË£¬ÎÒ»¹ÊÇÖ¤Ã÷¸øÄãÃÇ¿´°É¡£¡±

    Ëµ×Å£¬³Ìŵ´ó²½Âõµ½Ì¨ÉÏ£¬¶ÔÅԱ߻¹ÔÚã¶ÉñµÄÇàÄêÂõÂ×˵µÀ£¬¡°Óз۱ÊÂ𣿡±

    ¡°Å¶£¬ÓУ¬ÓС£¡±ÂõÂ׶Ì·Á˼¸Ã룬ÃÔÃÔºýºýµÄ´ÓÒ»ÅԵݸø³ÌŵһºÐ·Û±Ê¡£

    ÎªÁË·½±ã£¬¾Æµê·½ÃæÔç¾ÍÔÚÀñÌý²Ì¨Ç½ÃæÉÏ×°ÉÏÁËËÄÃæÉÏÏÂÀ­¶¯µÄºÚ°å¡£

    ³Ìŵ²»¹ÜÀ­Èû¶ûºĮ́϶þÊ®¶àλÊýѧ¼Ò´ôÖ͵ÄÑÛÉñ£¬×Ô¹Ë×ÔµÄà§à§ÔÚºÚ°åÉÏдµÀ£º

    ¡¾ÉèXÊÇFqÉϵÄdά¹â»¬ÉäÓ°´Ø£¬ÔòZataº¯ÊýZx(T)ÊÇÒ»¸öÓÐÀíº¯Êý£¬¼´Zx(t)¡ÊQ(T)£¬¸ü¾«È·µÄ£¬Zx(T)¿Éд³ÉÈçÏÂÓÐÏÞ½»´í»ýµÄÐÎʽ£º

    Zx(T)=¡ÇPi(T)^(-1)^(i+1)=P1(T)P3(T)¡­¡­P2d-1(T)/p0(T)P2(T)¡­¡­P2d(T)£¬ÆäÖÐP0(T)=1-TºÍP2d(T)=1-q^dT.¡¿

    ¡¾¶ÔÓÚ1¡Üi¡Ü2d-1£¬Pi(T)¡Ê1+TZ[T]ÊÇÕûϵÊý¶àÏîʽ£¬²¢ÇÒPi(T)ÔÚC[T]ÖпɷֽâΪ¡Ç(1-aijT)£¬aij¡ÊZ.¡¿

    ¡­¡­¡­¡­

    ¡¾Zataº¯ÊýZx(T)Âú×ãÈçϺ¯Êý·½³Ì£ºZx(1/q^dT)=€q^dx/2T^xZx(T)£¬ÆäÖЀ=¡À1ºÍxÊÇXµÄÅ·À­Ê¾ÐÔÊý£¬µÈ¼ÛµÄ£¬Èç¹ûÁîZx(T):=Zx(T)T^x/2ºÍ¦Æ(s)=Zx(q^(-s))£¬Ôò¡­¡­¡¿

    ¡¾¡­¡­ÓÉÉϿɵ㬶ÔÓÚÒ»°ãÉäÓ°·ÇÆæÒì´úÊý´ØÉϵÄZataº¯Êý£¬ÓµÓÐÈçÏÂÈý¸öÐÔÖÊ£º... -->>
±¾ÕÂδÍ꣬µã»÷ÏÂÒ»Ò³¼ÌÐøÔĶÁ
ÉÏÒ»ÕÂĿ¼ÏÂÒ»Ò³

Çë°²×°ÎÒÃǵĿͻ§¶Ë

¸üг¬¿ìµÄÃâ·ÑС˵APP

ÏÂÔØAPP
ÖÕÉíÃâ·ÑÔĶÁ

Ìí¼Óµ½Ö÷ÆÁÄ»

Çëµã»÷£¬È»ºóµã»÷¡°Ìí¼Óµ½Ö÷ÆÁÄ»¡±